High-Dimensional Multivariate Time Series With Additional Structure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Principal Component Analysis for High Dimensional Multivariate Time Series

We study sparse principal component analysis (sparse PCA) for high dimensional multivariate vector autoregressive (VAR) time series. By treating the transition matrix as a nuisance parameter, we show that sparse PCA can be directly applied on analyzing multivariate time series as if the data are i.i.d. generated. Under a double asymptotic framework in which both the length of the sample period ...

متن کامل

The Modelling of Short High-Dimensional Multivariate Time Series

In bio-medical domains there are many applications involving the modelling of multivariate time series (MTS) data. One area that has been largely overlooked so far is the particular type of time series where the dataset consists of a large number of variables but with a small number of observations. This thesis presents a methodology for the modelling of this type of data and introduces a novel...

متن کامل

Network structure of multivariate time series

Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multi...

متن کامل

Quantification of Nonstationary Structure in High-dimensional Time Series

We consider the problem of detecting and quantifying nonstationary structure in time series from highdimensional dynamical systems. This problem is relevant in particular for EEG monitoring, e.g. for the prediction of epileptic seizures, but also for practical data analysis in many other fields. Three groups of measures of nonstationarity are discussed: Correlation dimension, measures based on ...

متن کامل

Modeling High Dimensional Time Series

This paper investigates the effectiveness of the recently proposed Gaussian Process Dynamical Model (GPDM) on high dimensional chaotic time series. The GPDM takes a Bayesian approach to modeling high-dimensional time series data, using the Gaussian process Latent Variable model (GPLVM) for nonlinear dimensionality reduction combined with a nonlinear dynamical model in latent space. The GPDM is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2017

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2016.1265528